Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus.
نویسندگان
چکیده
The main source of excitation to the ventral cochlear nucleus (VCN) is from glutamatergic auditory nerve afferents, but the VCN is also innervated by two groups of cholinergic efferents from the ventral nucleus of the trapezoid body. One arises from collaterals of medial olivocochlear efferents, and the other arises from neurons that project solely to the VCN. This study examines the action of cholinergic inputs on stellate cells in the VCN. T stellate cells, which form one of the ascending auditory pathways to the inferior colliculus, and D stellate cells, which inhibit T stellate cells, are distinguished electrophysiologically. Whole-cell recordings from stellate cells in slices of the VCN of mice demonstrate that most T stellate cells are excited by cholinergic agonists through three types of receptors, whereas all D stellate cells tested were insensitive to cholinergic agonists. Nicotinic excitation in T stellate cells has two components. The faster component was blocked by alpha-bungarotoxin and methyllycaconitine, suggesting that receptors contained alpha7 subunits; the slower component was insensitive to both. Muscarinic receptors excite T stellate cells by blocking a voltage-insensitive, "leak" potassium conductance. Our results suggest that cholinergic efferent innervation enhances excitation by sounds of T stellate cells, opposing the inhibitory action of cholinergic innervation in the cochlea that is conveyed indirectly through the glutamatergic afferents. The inhibitory action of D stellate cells on their targets is probably not affected by cholinergic inputs. Excitation of T stellate cells by cholinergic efferents would be expected to enhance the encoding of spectral peaks in noise.
منابع مشابه
Hyperpolarization-activated currents regulate excitability in stellate cells of the mammalian ventral cochlear nucleus.
The differing biophysical properties of neurons the axons of which form the different pathways from the ventral cochlear nucleus (VCN) determine what acoustic information they can convey. T stellate cells, excitatory neurons the axons of which project locally and to the inferior colliculus, and D stellate cells, inhibitory neurons the axons of which project to the ipsi- and contralateral cochle...
متن کاملThe role of muscarnic cholinergic receptor of the bed nucleus of stria terminalis on cardiovascular response and baroreflex modulation in rat.
Introduction: The bed nucleus of the stria terminalis (BST) is a limbic structure which is involved in cardiovascular regulation and baroreflex modulation. The presence of cholinergic synaptic terminalis with high level of muscarinic receptors in the BST has been demonstrated. This study was performed to find the role of the cholinergic muscarinic receptor in cardiovascular response and baro...
متن کاملA Neural Circuit Model of the Ventral Cochlear Nucleus
Abstract We present a detailed network model of neurons of the cochlear nucleus to explore leveldependent processing by T stellate cells. These cells selectively process input from two types of auditory nerve fibres to enhance their dynamic range. We use a biologically plausible network between T stellate, D stellate and tuberculoventral cells, to show how level-dependent selective processing c...
متن کاملTime course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input.
AMPA receptors mediate rapid glutamatergic synaptic transmission. In the mammalian cochlear nuclei, neurons receive excitatory input from either auditory nerve fibers, parallel fibers, or both fiber systems. The functional correlates of differences in the source of input were examined by recording AMPA receptor-mediated, miniature EPSCs (mEPSCs) in whole-cell voltage-clamp mode from identified ...
متن کاملTransformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms.
1. We have stimulated responses of stellate cells in the anteroventral cochlear nucleus (AVCN) to single-formant stimuli (SFSs) with the use of recorded auditory-nerve fiber (ANF) responses as inputs. In particular, two important features of temporal discharge patterns, the phase locking to best frequency (BF) tones and to stimulus envelopes, were examined in the model output. Our earlier exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 18 شماره
صفحات -
تاریخ انتشار 2001